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We present in this paper a theoretical analysis of the current-voltage �I-V� characteristics of a hybrid
normal-superconducting device consisting of a quantum dot and two electrodes that can be either normal or
superconducting. We show that voltage drops at two different contacts that have been regarded unimportant in
literature play essential roles in the Andreev tunneling process when at least one of electrodes is supercon-
ducting. A differential-conductance anomaly caused by the aforementioned voltage drops is predicted. We also
propose a spectroscopy method to measure the energy levels of a quantum dot as well as voltage drops at
contacts between the quantum dot and the two leads. Our findings have potential applications for the next
generation of electronic devices at nanoscale.
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I. INTRODUCTION

Transport through a superconducting quantum point con-
tact �QPC�, a normal �N� atomic or molecular-size center
characterized by several discrete energy levels, and con-
nected to two superconducting �S� electrodes, plays a funda-
mental role in our understanding of nanoelectronic devices
driven out of equilibrium, thanks to the ac-Josephson effect.1

Two widely used techniques to fabricate QPCs are scanning
tunneling microscope �STM�2 and mechanically controlled
break-junctions �MCBJs�.3 They often operate at low tem-
peratures so that the two electrodes are in the superconduct-
ing phase. The measured current-voltage �I-V� characteristics
for a superconducting QPC often shows a linear behavior at
“high” bias voltages ��3� /e, � is the superconducting gap�,
and a complicated subgap structure at low bias originating
from multiple Andreev reflections �MARs�.4–6 The differen-
tial conductance in the linear range of the I-V curve is be-
lieved to be the same as the normal junction,3,7–9 and the
subgap structure can be used to identify the transmission
eigenchannels of the normal junction via the so-called PIN

code.10 Recently, these superconducting I-V characteristics
have been employed to probe other internal degrees of free-
dom of the atomic center such as magnetic structures,2,11

molecular vibrating modes,8 and Kondo impurity.12

In theoretical modeling, the atomic center can be modeled
by a quantum dot, and voltage drops at two contacts between
the electrodes and the center quantum dot are conventionally
assumed to be the same, i.e., half of the bias voltage11,13

which may be justified for symmetric electrodes or for small
bias voltage �in the linear-response regime�. For real molecu-
lar junctions, the nature of bonding at two contacts is usually
different which may result in different voltage drops. This
has dramatic consequences on the transport properties espe-
cially for superconducting electrodes. Even a small differ-
ence between these two voltage drops ��� /e�, which would
be unimportant for normal junctions will significantly shift
the position of energy levels of the quantum dot relative to
superconducting gap edges to cause substantial changes in
MAR processes. Despite their importance, these issues have
not been investigated before.

In this paper, we present theoretical results on the non-
equilibrium transport properties of a quantum dot connected
to two electrodes that can be either normal or superconduct-
ing. Our focus is on the effect of the symmetry, or lack of it,
between the two contacts on the renormalization of the dot
energy levels and the tunneling processes. We show that the
aforementioned connections between I-V curves of super-
conducting QPCs and transport properties of normal ones
become complicated for general contacts symmetry. How-
ever, these “complications” can be turned into a useful spec-
troscopic tool for QPCs such as molecular nanojunctions.

II. MODEL AND METHOD

The model system under study is shown in Fig. 1�a�,
where a quantum dot is connected to two electrodes and the
whole system is under a bias voltage V. The voltage drops
from the left electrode to the quantum dot, and from the dot
to the right electrode are denoted as VLD and VDR respec-
tively. The Hamiltonian of the system can then be written as

H = HL + HR + HD + HT, �1�

where the Hamiltonian for the left �right� lead HL�R� in the
framework of Bardeen-Cooper-Schrieffer �BCS� theory,
quantum dot HD, and tunneling term HT are given by

HL + HR = �
k,�,�=L,R

��,k,�a�,k,�
† a�,k,�

+ �
k,�

��a�,k,↓a�,−k,↑ + H.c., �2�

HD = �
d,�

��d,� − eVs�cd,�
† cd,�, �3�

HT = �
k,d,�,�=L,R

t�,dei/2���+2/�eV�t�a�,k,�
† cd,� + H.c. �4�

In this paper, we assume that the two BCS superconducting
leads are symmetric so that the superconducting gap of left
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lead is the same as that of right lead, �L=�R=�. Through
out the paper, the left lead is taken to be the potential ground,
so we have VL=0, and the bias voltage V equals −VR. The
initial superconducting phases of two leads are denoted as
�L,R. Energy levels in the quantum dot are denoted as �d,�
where � is the spin index. The ‘symmetry’ parameter s in HD
is defined as s=VLD /V, and the term −eVs represents the
potential shift of the quantum dot due to the distribution of
bias voltage at two contacts. Note that this potential shift is
bias dependent; therefore, it is very different from the con-
stant potential shift due to gate voltage. In literature, s is
usually set to be 0.5 corresponding to the same voltage drops
at two contacts.11,13 In current work, we examined the effects
of different s on the tunneling of the supercurrent. A real
example of the QPC is shown in Fig. 1�b�, where two super-
conducting bcc �100� Nb leads are connected by a Nb dimer.
This Nb junction has been shown by recent studies to corre-
spond to Nb contacts fabricated by MCBJ method in
experiments.7,8 The atomic configuration of the junction is
determined by first pinciples calculations based on density-
functional theory �DFT�,14 and consitent with the reference
8. The density of states �DOS� calculated by DFT method is
shown in Fig. 1�c�, where several localized states near the
Fermi energy can be clearly seen. In Fig. 1�b�,we also show
the isosurface of the electron density near the Fermi energy
�from Ef −1 meV to Ef +1 meV�, where we can see that
those states are indeed localized on the Nb dimer. Since the
difference between the localized state and the Fermi energy
is smaller than the superconducting gap of Nb ��1.4 meV�,
the Nb dimer can be treated as a quantum dot with several

localized levels inside the superconducting gap, and can be
described by Hamiltonian in Eq. �1�. It is worth mentioning
here that unlike the macroscopic quantum dot for which the
parameter s may be a simple function of �L and �R, the
system we are interested in is very small �at molecular scale�.
For such small systems, the potential drops at two contacts
sensitively depend on chemical bonding; therefore an ex-
plicit expression for s is not possible, and it has to be calcu-
lated self consistently by first-principles method. When a fi-
nite bias is applied to the system, potential drops at two
contacts can be evaluated by solving Poisson’s equation un-
der the framework of the ab initio method combining
density-functional theory and nonequilibrium Green’s func-
tion’s techniques.

The coupling term HT in Eq. �1� is a function periodic in
time with a frequency 	=2eV /�. Therefore, the time-
dependent current I�t� is also periodic in time, and has a
discrete Fourier transform as the following:

I�t� = �
n

Inein	t. �5�

The time-averaged current I0�t�=�j0���d�, where j0��� is the
current density that can be evaluated in terms of Green’s
functions of quantum dot15 as

I0 = −
e



� Im�Tr�� fL����L���Gm,n=0

r ���

+
1

2
�L

����Gm,n=0
 ���	�L�L�z

d� . �6�

In Eq. �6�, Gm,n
r����� denotes the double Fourier transform of

retarded �lesser� Green’s function of the quantum dot in
Nambu space.13 The term fL��� is the left lead Fermi-Dirac
distribution function. �L��� is the BCS density of states of
left lead �the normal density of states of the lead is taken to
be 1�, and can be calculated by �L���=Re��L����,
where �L/R���=−i� /��L/R

2 −�2 for �L/R� ���, and
�L/R���= ��� /��2−�L/R

2 for �L/R ���. � and �z are self-energy
of leads and Pauli matrix, respectively. The coupling func-
tion �L/R is defined as �L/R,ij =2
tL/R,itL/R,j

� . In the paper, �L
and �R are assumed to be two constants. The retarded
Green’s function can be computed by Dyson equation via
direct matrix inversion, Gm,n

r ���= �gr�−1−�r�−1, where gr is
the double Fourier transform of retarded Green’s function of
bare quantum dot without two leads, and �r is the
summation of retarded self energies of two leads. With
Gr, the lesser Green’s function can be calculated as
Gm,n

 ���= Gr�������Ga����m,n, where �=�L
+�R

. �L�R�
 is

the lesser self-energy of left �right� lead. The double Fourier
transforms of gr, �r, and � in Nambu space are calculated
in standard way.15

III. RESULTS AND DISCUSSION

For simplicity, we first consider a quantum dot with only
one level �d=0.0 eV, neglect spin-dependence, and assume
�L=�R=�. In Fig. 2�a�, the time-averaged S-N-S current as a
function of bias voltage for s=0.5 and 0.2 is shown
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FIG. 1. �Color online� �a� Sketch of potential drop across the
central region: VLD+VDR=V, and in general VLD�VDR. �b� Bcc
�100� Nb leads connected by an Nb dimmer. The distance between
two tips, �L=8.2 Å, is consistent with the Ref. 8. The iso-surface
of electron density around Fermi energy is also shown. �c� Total
DOS from DFT calculation resolved up to 0.1 meV, showing states
around the fermi energy.
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��=0.5� in calculations�. For s=0.5, the I-V curve shown in
the figure essentially is the same as that calculated by
Yeyati13 although the method we used here is different.
When bias voltage is small �eV0.5��, the I-V curve is not
sensitive to s, while for bigger bias voltages, we see signifi-
cant differences between I-V curves for different s. For sub-
gap structures �eV2��, both positions and heights of peaks
of I-V curves for different s are different. Furthermore, a
small “new” peak appears around eV�0.63� when s=0.2.
This small peak is caused by subtle effects of s on positions
of Andreev bound states. The current density as a function of
energy at bias voltage 0.63� is shown in inset �2� of the
figure. When s=0.5, the dot level exactly lies in the middle

of superconducting gaps, and symmetrically couples to left
and right superconducting gaps, leading to evenly distributed
current-carrying Andreev bound states �ABSs� inside the gap
as shown in the figure. Note that when s=0.5, there are five
ABSs, and the spacing between successive states is exactly
0.63�. When s changes from 0.5 to 0.2, the dot level is
shifted leftward �becoming less�, and the leftmost ABS is
shifted leftward also. This shift drives the ABS outside the
superconducting gap, and in turn greatly supresses the state
due to the absense of MAR outside the gap, resulting in only
four ABSs inside the gap for s=0.2. The decrease of the
number of ABSs inside the gap means the decrease in total
number of Andreev reflections, leading to the increase of
total current as we can see from the significant increase of
the current density each ABS carries for s=0.2. When bias
voltage is slightly increased, the leftmost peak of s=0.2 will
be further away from the gap, leading to greater supression
of the state and the small decrease of total current. At bias
voltages bigger than 2� /e, the I-V curve is linear regardless
of s, while, the differential conductance changes drastically
when s changes. In order to see effects of s on I-V charac-
teristics more clearly, we plot the differential conductance
dI /dV as function of � at bias voltage 2.5� /e for different
values of s in Fig. 2�b�. Since two leads are symmetric, there
are no differences in I-V characteristics between s and
�1−s�, so we only show cases for s�0.5. For all s smaller
than 0.3, dI /dV as a function of � is essentially the same. It
decreases monotonically with �, and resembles dI /dV in the
linear-response regime of a quantum dot connected with two
normal leads, dI /dV��2 / �d

2+�2�,16 where �d is the energy
level of the dot. This supports the general belief in previous
theoretical and experimental studies2,3,7,8,10 that dI /dV of a
superconducting QPC measured at a ‘high’ bias around
2.5� /e can be taken to be the conductance of the corre-
sponding normal QPC. However, when s increases, at small
coupling ��2��, dI /dV starts to significantly deviate from
the linear-response behavior of normal junctions. For the
case of symmetrical contacts �s=0.5�, a high differential-
conductance peak appears at small � around 0.5�. The peak
value is quite high that it is comparable to the conductance at
big � around 10�. This is certainly very surprising and will
never occur for normal junctions.

This differential-conductance anomaly can be understood
by the broadening of the energy level of the quantum dot due
to coupling with two superconducting leads. At a “high” bias
voltage ��2.5� /e�, the time-averaged electron DOS of the
quantum dot can be simplified to

DOS��� =
1




�

2
Re�z�

� − ��d − eVs��2 + ��

2
Re�z�	2 , �7�

where z=����+���+V�. When s=0.0, the energy level of the
quantum dot is pinned at the center of superconducting gap
of the left lead. The broadening of the energy level due to
coupling with two leads, � /2 Re�z�, in this case is approxi-
mately � which is independent on bias. When the coupling
strength � is less than the width of the gap ���, the dot level
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FIG. 2. �Color online� �a� Time averaged I-V curves for two
different s calculated at �=0.5�, �d=0 �kbT=0.1� for all graphs�.
Inset �1�: The small peak around eV=0.63�. Inset �2�: Current den-
sity as a function of energy for the bias voltage eV=0.63�. Each
peak inside the gap corresponds to one current-carrying Andreev
bound state. Note that there are five Andreev bound states for
s=0.5, and only four for s=0.2. �b� dI /dV as a function of coupling
strength � for various s. A peak appears around ��0.5� for
s�0.3. Time averaged current density J0 as a function of energy at
two slightly different bias, eV=2.5� and eV=2.8�, for �c� s=0.0,
and �d� s=0.5.
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is completely confined within the gap. When s=0.5, the dot
level lies between two superconducting gaps, and the broad-
ening is a function of bias.

To see the connection between DOS and dI /dV, we cal-
culated the current density as a function of energy for
�=0.5� at bias voltages 2.5� /e and 2.8� /e for both s=0.5
and s=0.0 as shown in Figs. 2�c� and 2�d�. At bias voltages
�2.5� /e, the current tunneling through the dot level domi-
nates the total current, and the dominating current-density
peak shows the similar behavior as that of DOS as we can
see in the figure. When s=0.0 Fig. 2�c��, the dominating
peak is completely confined inside the left superconducting
gap, and remains the same when the bias voltage changes
from 2.5� /e to 2.8� /e, resulting in a small differential con-
ductance. When s=0.5 Fig. 2�d��, the dominating peak lies
between two superconducting gaps, and the half width is
essentially determined by the energy window defined as the
distance between nearest boundaries of two gaps. As a result,
when the bias changes from 2.5� /e to 2.8� /e, the current-
density peak originating from tunneling through the dot level
becomes much broader, leading to a much bigger current and
a high differential conductance. When two leads are normal,
Re�z� in Eq. �7� is 2, and the broadening of the dot level is
simply �, which is independent on bias voltage, and the
differential-conductance anomaly will not occur.

We then calculated dI /dV as a function of �L at
eV=2.5� for a two-level quantum dot with different values
of �R, and found essentially the same physics: A high
differential-conductance peak appears at small �L around
0.5� for s�0.3. For a microscopic quantum point contact, s
is mainly determined by the bonding nature at two contacts,
and may be tuned via the nice control of the distance be-
tween the quantum dot and two leads in MCBJs or junctions
made by STM. Also, since the coupling function, �L/R, sen-
sitively depends on the distance between two leads, we be-
lieve that with a nice control of the breaking process of the
junction, the differential-conductance-anomaly discussed
here should be able to be observed in experiment.

We next examine the effects of s on transport properties
of an S-N-N junction. In our calculations, we set the left lead
to be superconducting, and the right lead to be normal by
taking �R=0. In this case, the tunneling term HT in Eq. �4�
has no time dependence. Therefore, the double Fourier trans-
form is not needed.19 Following the similar procedure as
described above, the current tunneling through the S-N-N
junction can be calculated using Eq. �6�. In Fig. 3�a�, we
show I-V curves for different s when the dot level is zero. In
this case, I-V curves are antisymmetric for positive and nega-
tive biases. When the dot level is not zero, for example
�d=0.5�, the antisymmetry between positive and negative
biases is absent, and a peak appears at a certain positive bias
that is a function of s as shown in Fig. 3�b�. The peak of the
current is a result of the resonance tunneling when
�d=eVps, where Vp is the bias voltage at which the resonance
occurs. With the help of a gate voltage which shifts the dot
energy level, the peak of the I-V curve can be used to mea-
sure the dot level �d and the symmetry factor s. First, without
gate voltage, we have �d=eVps, where Vp is the bias voltage

where we get a peak in I-V curve. Then with a gate voltage
Vg applied to the quantum dot, we have �d+eVg=eVp�s,
where Vp� is the new peak position with the gate voltage.
Comparing these two equations, we have s=Vg / �Vp�−Vp� and
then the dot level can be computed. This technique is also
applicable to the dot with multilevels, where we have multi-
peaks in I-V curves with each of them corresponding to one
dot level �not shown in this paper�.

IV. SUMMARY

In summary, we presented in this paper a systematic the-
oretical analysis for transport properties of S-N-S and S-N-N
QPCs. We demonstrated that for superconducting QPCs, the
voltage drops at two contacts play essential roles in the su-
percurrent tunneling. When two contacts are symmetric, i.e.,
voltage drops are the same at two contacts, a differential-
conductance anomaly at small � for bias voltages higher than
2� /e is predicted. This differential-conductance anomaly is
caused by the broadening of the energy level in quantum dot
due to the coupling with two superconducting leads, and will
not occur for normal junctions. For S-N-N junctions, we sug-
gested that the peak of I-V curve can be used to measure the
dot level and the symmetry factor s which provides informa-
tion of voltage drops at two contacts. We believe that the
spectroscopy method proposed here has important potential
applications for molecular electronics where the junction is
usually molecular scale, and direct measurements of voltage
drops at contacts are in principle forbidden since a small
perturbation, i.e., the addition of a small molecule, will de-
stroy the junction.
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